
Introduction to Git

Git: A distributed version control system

Advantages:

Every repository has a full version history

Most operations run locally

Reliable data handling, ensuring integrity and availability

Efficient data management for versions and branches

Scalable collaboration mechanisms for large teams and complex projects

Caveats:

Need to learn and understand the underlying model

Not built for binary files or large media files

Learning objectives

Understand and use git to develop software in teams.

Part 1: Branching
Part 2: Committing
Part 3: Collaborating

Each part starts with the concepts before the practice session.

In the practice sessions:

Form groups of two to three students

Work through the exercises

Create a cheat sheet summarizing the key commands

* Note: This session is based on our unique and peer-reviewed approach.

https://digital-work-lab.github.io/rethink-git-teaching/

Part 1: Branching

Commits

A commit refers to a snapshot (version) of the whole project
directory, including the meta data and files

Commits are identified by the SHA fingerprint of their meta data
and content*, e.g., 98ca9

Commits are created in a sequence, with every commit pointing
to its parent commit(s)

The tree object contains all files (and non-empty directories); it
is identified by a SHA hash

Commits are created by the git commit command

* If any of the meta data or content changes, the SHA will be completely different.

The DAG, branches, and HEAD

Commits form a directed acyclic Graph (DAG), i.e., all commits can have one or
more children, and one or more parents (except for the first commit, which has no
parent). Closed directed cycles are not allowed.

With the git branch <branch-name> command, a separate line of commits can
be started, i.e., one where different lines of commits are developed from the same
parent. The branch pointer typically points at the latest commit in the line.

With the git switch <branch-name> command, we can select the branch on
which we want to work. Switch effectively moves the HEAD pointer, which points
to a particular branch and indicates where new commits are be added.

With the git merge <other-branch> command, separate lines of commits can be
brought together, i.e., creating a commit with two parents. The merge commit
integrates the contents from the <other-branch> into the branch that is currently
selected. The <other-branch> is not changed.

Per default, Git sets up a branch named "main".

Note: Arrows point from children to parent commits.

Practice: Branching

To practice git branching, we use the learn-git-branching tutorial.

Complete the first two levels on branching, merging, and navigating in the git tree.

NOTE: You can type "undo" when you made a mistake.

https://learngitbranching.js.org/?locale=de_DE

Part 2: Committing

The working directory and .git repository

All working file contents reside in the working directory; staged and committed
file contents are stored in the .git directory (a subfolder of the working
directory).

Git allows us to stage (select) specific file contents for the next commit.

With git add <file-name>, contents of an untracked or modified file are
copied to the .git repository and added to the staging area, i.e.,
explicitly marked for inclusion in the next commit.

With git commit, staged files contents are included in a commit.

The git init command creates the .git directory.

The three states of a file

Files in the working directory can reside in three states:

New files are initially untracked, i.e., Git does not include new files in
commits without explicit instruction.

With git add, file contents are staged and the file is tracked. Given that
the file in the working directory is identical with the staged file contents,
the file is unmodified.

When users change a file, it becomes modified, i.e., the file in the
working directory differs from the file contents in the staging area.

With git add, the file contents are staged again, and the file becomes
unmodified.

With git rm, files are no longer tracked.

Note: git add and git rm do not change the contents of the file in the working
directory.

Resetting changes

To undo changes that are not yet committed, it is important to understand
whether they are staged or unstaged:

If changes are not yet staged, the file is currently modified. A git restore
<file-name> replaces the file in the working directory with the staged
version. As a result, the file is unmodified because it corresponds to the
staged file.

If the file is currently unmodified, a git restore --staged <file-name>, Git
discards the staged changes by using the last committed version. The file
contents in the working directory do not change, but the file becomes
modified because it differs from the staged version.

Part 3: Collaborating

Collaborating

The distributed model of Git means that every repository has a full version history,
(almost) all operations can be completed locally, and every repository can be
developed autonomously.

To collaborate, a remote repository is needed, initially named "origin"

If the remote repository exists, the git clone command retrieves a local copy

To create a remote repository (named "origin"), and push a specific branch:

git remote add origin REMOTE-URL
git push origin main

Collaborating on branches

To retrieve changes, use the git pull command

To share changes, use the git push command

Most remote operations, including pull, push, pull requests refer to
branches

In some cases, branches must be selected explicitly, and in other
cases, git automatically selects branches, i.e., it remembers the typical
branch to pull or push

Collaborating with forks

This model works if you are a maintainer of the remote/origin, i.e., if you
have write access.

In Open-Source projects, write-access is restricted to a few
maintainers

At the same time, it should be possible to integrate contributions from
the community

Forks are remote copies of the upstream repository

Contributors can create forks at any time and push changes

Contributors can open a pull request to signal to maintainers that
code from the fork can be merged

Pull requests are used for code review, and improvements before code
is accepted or rejected

