
Introduction to Git

Introduction to Git

1

Check-in: Group formation

Milestone

Anyone not yet part of an issue discussion?

Challenges related to the setup?

Introduction to Git

2

https://github.com/CoLRev-Environment/colrev/milestones

Git: A distributed version control system

Advantages:

Every repository has a full version history

Most operations run locally

Reliable data handling, ensuring integrity and availability

Efficient data management for versions and branches

Scalable collaboration mechanisms for large teams and complex projects

Caveats:

Need to learn and understand the underlying model

Not built for binary files or large media files

Introduction to Git

3

Learning objectives

Understand and use git to develop software in teams.

Part 1: Branching
Part 2: Committing
Part 3: Collaborating

Each part starts with the concepts before the practice session.

In the practice sessions:

Form groups of two to three students

Work through the exercises

Create a cheat sheet summarizing the key commands

* Note: This session is based on our unique and peer-reviewed approach.

Introduction to Git

4

https://digital-work-lab.github.io/rethink-git-teaching/

Start the Codespace

Open the notebook for practicing Git branching:

The setup can run in the background, while we focus on the concepts.

Introduction to Git

5

https://github.com/codespaces/new?repo=digital-work-lab/practice-git
https://github.com/codespaces/new?repo=digital-work-lab/practice-git

Part 1: Branching

Introduction to Git

6

Commits

A commit refers to a snapshot (version) of the whole project
directory, including the metadata and files

Commits are identified by the SHA fingerprint of their metadata
and content*, e.g., 98ca9

Commits are created in a sequence, with every commit pointing
to its parent commit(s)

The tree object contains all files (and non-empty directories); it
is identified by a SHA hash

Commits are created by the git commit command

* If any of the metadata or content changes, the SHA will be completely different.

Introduction to Git

7

The DAG, branches, and HEAD

Commits form a directed acyclic Graph (DAG), i.e., all commits can have one or
more children, and one or more parents (except for the first commit, which has no
parent). Closed directed cycles are not allowed.

With the git branch <branch-name> command, a separate line of commits can
be started, i.e., one where different lines of commits are developed from the same
parent. The branch pointer typically points at the latest commit in the line.

With the git switch <branch-name> command, we can select the branch on
which we want to work. Switch effectively moves the HEAD pointer, which points
to a particular branch and indicates where new commits are added.

With the git merge <other-branch> command, separate lines of commits can be
brought together, i.e., creating a commit with two parents. The merge commit
integrates the contents from the <other-branch> into the branch that is currently
selected. The <other-branch> is not changed.

Per default, Git sets up a branch named "main".

Note: Arrows point from children to parent commits.

Introduction to Git

8

Practice: Branching

Open the notebook for practicing Git branching:

Introduction to Git

9

https://github.com/codespaces/new?repo=digital-work-lab/practice-git
https://github.com/codespaces/new?repo=digital-work-lab/practice-git

Part 2: Committing

Introduction to Git

10

The working directory and .git repository

All working file contents reside in the working directory; staged and committed
file contents are stored in the .git directory (a subfolder of the working
directory).

Git allows us to stage (select) specific file contents for the next commit.

With git add <file-name>, contents of an untracked or modified file are
copied to the .git repository and added to the staging area, i.e.,
explicitly marked for inclusion in the next commit.

With git commit, staged files contents are included in a commit.

The git init command creates the .git directory.

Introduction to Git

11

The three states of a file

Files in the working directory can reside in three states:

New files are initially untracked, i.e., Git does not include new files in
commits without explicit instruction.

With git add, file contents are staged, and the file is tracked. Given that
the file in the working directory is identical with the staged file contents,
the file is unmodified.

When users change a file, it becomes modified, i.e., the file in the
working directory differs from the file contents in the staging area.

With git add, the file contents are staged again, and the file becomes
unmodified.

With git rm, files are no longer tracked.

Note: git add and git rm do not change the contents of the file in the working
directory.

Introduction to Git

12

Resetting changes

To undo changes that are not yet committed, it is important to understand
whether they are staged or unstaged:

If changes are not yet staged, the file is currently modified. A git restore
<file-name> replaces the file in the working directory with the staged
version. As a result, the file is unmodified because it corresponds to the
staged file.

If the file is currently unmodified, a git restore --staged <file-name>, Git
discards the staged changes by using the last committed version. The file
contents in the working directory do not change, but the file becomes
modified because it differs from the staged version.

Introduction to Git

13

Practice: Committing

Open the notebook for practicing Git committing:

Introduction to Git

14

https://github.com/codespaces/new?repo=digital-work-lab/practice-git
https://github.com/codespaces/new?repo=digital-work-lab/practice-git

Transfer challenges I

1. Consider how the git switch (or the revert/pull/checkout) command affects the git areas. How does it affect the working
directory?

2. Git provides the option to edit prior commits using an interactive rebase, such as the git rebase -i. How would that affect the
following commits?

Introduction to Git

15

Transfer challenge: Git merge conflicts

Open the notebook for practicing the resolution of Git merge conflicts (related to branching and committing):

Introduction to Git

16

https://github.com/codespaces/new?repo=digital-work-lab/practice-git
https://github.com/codespaces/new?repo=digital-work-lab/practice-git

Part 3: Collaborating

Introduction to Git

17

Collaborating

The distributed model of Git means that every repository has a full version history,
(almost) all operations can be completed locally, and every repository can be
developed autonomously.

To collaborate, a remote repository is needed, initially named "origin"

If the remote repository exists, the git clone command retrieves a local copy

To create a remote repository (named "origin"), and push a specific branch:

git remote add origin REMOTE-URL
git push origin main

* If the remote repository does not exist, you have to add the remote origin and push the repository

Introduction to Git

18

Collaborating on branches

To retrieve changes, use the git pull command

To share changes, use the git push command

Most remote operations, including pull, push, pull requests refer to
branches

In some cases, branches must be selected explicitly, and in other
cases, git automatically selects branches, i.e., it remembers the typical
branch to pull or push

Introduction to Git

19

Collaborating with forks

This model works if you are a maintainer of the remote/origin, i.e., if you
have write access.

In Open-Source projects, write-access is restricted to a few
maintainers

At the same time, it should be possible to integrate contributions from
the community

Forks are remote copies of the upstream repository

Contributors can create forks at any time and push changes

Contributors can open a pull request to signal to maintainers that
code from the fork can be merged

Pull requests are used for code review, and improvements before code
is accepted or rejected

Introduction to Git

20

Fork, invite, clone, and pull-request on GitHub

Introduction to Git

21

Work in a forked repository

In the fork, it is recommended to create working
branches instead of committing to the main branch.

It is good practice to regularly sync the main branches
(on GitHub), and merge the changes into your working
branches (locally or on GitHub).

Syncing changes may be necessary to get bug fixes
from the original repository, and to prevent diverging
histories (potential merge conflicts in the pull request).

Introduction to Git

22

Remotes and branches

Most remote operations, including pull, push, pull requests refer
to branches

In some cases, branches must be selected explicitly: pull
requests, or pulling new branches

In other cases, git automatically selects branches, i.e., it
remembers the typical branch to pull or push

Introduction to Git

23

Transfer challenges II

Once a pull request has been opened, how can new changes (commits) be added?

Assume that you discovered a typo in a very old commit. One option would be to run an interactive rebase and fix the typo. Why
could such cases of "rewriting history" be problematic in collaborative settings?

When pulling changes, there are two strategies to handle diverging branches: --merge or --rebase . How do the results differ
between these strategies?

GitHub offers the possibility to edit files directly. Are all three git areas available in this setting?

Introduction to Git

24

Which branching / merging strategy should we select?

Recommended branch setup in your fork:

1. Work on a shared feature branch, such as unpaywall_search . This is where your latest, working version is developed

2. Do not commit directly to remotes/fork/main . This branch should be kept in-sync with remotes/origin/main

3. Regularly merge remotes/origin/main into remotes/fork/main and remotes/fork/main into your feature branch using
merge commits (i.e., sync, which will fast-forward, git fetch , git switch feature_branch and git merge main)

Introduction to Git

25

https://digital-work-lab.github.io/open-source-project/output/02-git.html#33

Survey

Please share your feedback to help us improve!

Introduction to Git

26

Project organization

Select a team leader who creates the fork and invites group members

Plan how tasks could be completed in separate branches

Avoid working on the main branch and synchronize it regularly with the original repository

Regularly check whether branches should be synchronized (merged)

Task: complete one merge between branches.

Note: we will distribute a survey asking for the current state of your project after the merge. Your input will help us prepare the best
practice session.

Introduction to Git

27

We value your feedback and suggestions

We encourage you to share your feedback and suggestions on this slide deck:

 Suggest specific changes by directly modifying the
content
 <img src="../assets/iconmonstr-info-
12.svg" alt="New Issue" width="32" height="32"> Provide feedback by submitting an issue
Your feedback plays a crucial role in helping us align with our core goals of impact in research, teaching, and practice. By
contributing your suggestions, you help us further our commitment to rigor, openness and participation. Together, we can
continuously enhance our work by contributing to continuous learning and collaboration across our community.

Visit this page
to learn more about our goals: ️.

Introduction to Git

28

